
labibi Documentation
Release 1.0

C. Titus Brown

October 21, 2016

Contents

1 Welcome! 3
1.1 1. Learning goals . 3
1.2 2. Safe space and code of conduct . 3
1.3 3. Instructor introductions . 3
1.4 4. Amazon and cloud computing - why?! . 3
1.5 5. Sticky notes and how they work... + Minute Cards . 4

2 Starting up an Amazon Web Services machine 5
2.1 Start here: Start an Amazon Web Services computer: . 5
2.2 Full table of contents: . 5

3 Indices and tables 33

4 Short read quality and trimming 35
4.1 Prepping the computer . 35
4.2 Installing some software . 35
4.3 Running Jupyter Notebook . 36
4.4 Data source . 36
4.5 1. Copying in some data to work with. 36
4.6 1. Copying data into a working location . 37
4.7 2. FastQC . 37
4.8 3. Trimmomatic . 38
4.9 4. FastQC again . 39

5 K-mer Spectral Error Trimming 41
5.1 Why (or why not) do k-mer trimming? . 43

6 Run the MEGAHIT assembler 45
6.1 While the assembly runs... 45
6.2 After the assembly is finished . 47

7 Annotation with Prokka 49
7.1 Installing Prokka . 49
7.2 Running Prokka . 49
7.3 References . 50

8 Day 2 - installation instructions 51
8.1 Running Jupyter Notebook . 51

i

9 Gene Abundance Estimation with Salmon 53
9.1 Installing Salmon . 53
9.2 Running Salmon . 53
9.3 Working with count data . 54
9.4 Plotting the results . 55
9.5 References . 55

10 Mapping 57
10.1 Downloading data . 57
10.2 Splitting the reads . 57
10.3 Mapping the reads . 58
10.4 Converting to BAM to visualize . 58
10.5 Visualizing the read mapping . 58

11 Slicing and dicing with k-mers 61
11.1 Assemble the slice . 62

12 Using and Installing Circos 63
12.1 Installing Circos . 63
12.2 Visualizing Gene Coverage and Orientation . 64
12.3 References . 65

13 Workflow and repeatability discussion 67

14 Technical information 69

ii

labibi Documentation, Release 1.0

This workshop was given on October 12th and 13th, 2016, by Harriet Alexander and C. Titus Brown, at the Scripps
Institute of Oceanography.

For more information, please contact Titus directly.

The workshop was recorded (although the recording isn’t always very good, sorry!) You can view it here:

• Day 1, morning

• day 1, afternoon

• day 2, morning

• day 2, afternoon

Tutorials:

Contents 1

mailto:ctbrown@ucdavis.edu
https://www.youtube.com/watch?v=h3XBXTLmM8k
https://www.youtube.com/watch?v=pGEVHPh9q6A
https://www.youtube.com/watch?v=F-Pj4YAWzcA
https://www.youtube.com/watch?v=uGVHi9EUA1I

labibi Documentation, Release 1.0

2 Contents

CHAPTER 1

Welcome!

1.1 1. Learning goals

For you:

• get a first (or second) look at tools;

• gain some experience in the basic command line;

• get 80% of way to a complete analysis of some data;

• introduction to philosophy and perspective of data analysis in science;

1.2 2. Safe space and code of conduct

This is intended to be a safe and friendly place for learning!

Please see the Software Carpentry workshop Code of Conduct: http://software-carpentry.org/conduct.html

In particular, please ask questions, because I guarantee you that your question will help others!

1.3 3. Instructor introductions

Harriet Alexander - postdoc at UC Davis.

Titus Brown - prof at UC Davis in the School of Vet Med.

1.4 4. Amazon and cloud computing - why?!

• simplifies software installation;

• can be used for bigger analyses quite easily;

• good for “burst” capacity (just got a data set!)

• accessible everywhere;

3

http://software-carpentry.org/conduct.html

labibi Documentation, Release 1.0

1.5 5. Sticky notes and how they work... + Minute Cards

Basic rules:

• no sticky note - “working on it”

• green sticky note - “all is well”

• red sticky note - “need help!”

Place the sticky notes where we can see them from the back of the room – e.g. on the back of your laptop.

At the end of each session (coffee break, lunch, end of day) please write down on an index card one thing you learned
and one thing you’re still confused about.

—

Next: n-overview

4 Chapter 1. Welcome!

CHAPTER 2

Starting up an Amazon Web Services machine

2.1 Start here: Start an Amazon Web Services computer:

2.2 Full table of contents:

2.2.1 Start an Amazon Web Services computer:

This page shows you how to create a new “AWS instance”, or a running computer.

Start at the Amazon Web Services console (http://aws.amazon.com/ and sign in to the console).

5

http://aws.amazon.com/

labibi Documentation, Release 1.0

6 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

0. Select “EC2 - virtual servers in the cloud”

1. Switch to zone US West (N California)

2. Click on “Launch instance.”

3. Select “Community AMIs.”

4. Search for ami-05384865 (ubuntu-wily-15.10-amd64-server)

Use ami-05384865.

2.2. Full table of contents: 7

labibi Documentation, Release 1.0

8 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

2.2. Full table of contents: 9

labibi Documentation, Release 1.0

5. Click on “Select.”

6. Choose m4.xlarge.

7. Click “Review and Launch.”

8. Click “Launch.”

9. Select “Create a new key pair.”

Note: you only need to do this the first time you create an instance. If you know where your amazon-key.pem file is,
you can select ‘Use an existing key pair’ here. But you can always create a new key pair if you want, too.
10 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

If you have an existing key pair, go to step 12, “Launch instance.”

2.2. Full table of contents: 11

labibi Documentation, Release 1.0

10. Enter name ‘amazon-key’.

11. Click “Download key pair.”

12. Click “Launch instance.”

13. Select View instances (lower right)

14. Bask in the glory of your running instance

Note that for your instance name you can use either “Public IP” or “Public DNS”. Here, the machine only has a public
IP.

12 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

You can now Log into your instance with the UNIX shell or Configure your instance firewall.

2.2.2 Log into your instance with the UNIX shell

You will need the amazon-key.pem file that was downloaded in step 11 of booting up your new instance (see Start
an Amazon Web Services computer:).

Then, you can either Log into your instance from a Mac or Linux machine or Log into your instance from a Windows
machine.

Log into your instance via the UNIX shell (Mac/Linux)

See: Log into your instance from a Mac or Linux machine

Log into your instance via MobaXTerm (Windows)

See: Log into your instance from a Windows machine

Logging in is the starting point for most of the follow-on tutorials. For example, you can now install and run software
on your EC2 instance.

Go back to the top page to continue: Starting up an Amazon Web Services machine

2.2.3 Log into your instance from a Mac or Linux machine

You’ll need to do two things: first, set the permissions on amazon-key.pem:

chmod og-rwx ~/Downloads/amazon-key.pem

Then, ssh into your new machine using your key:

ssh -i ~/Downloads/amazon-key.pem -l ubuntu MACHINE_NAE

where you should replace MACHINE_NAME with the public IP or hostname of your EC2 instance, which is located
at the top of the host information box (see screenshot below). It should be something like 54.183.148.114 or
ec2-XXX-YYY.amazonaws.com.

Here are some screenshots!

2.2. Full table of contents: 13

labibi Documentation, Release 1.0

14 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

Change permissions and execute ssh

Successful login

Host information box - MACHINE_NAME location

2.2. Full table of contents: 15

labibi Documentation, Release 1.0

Logging in is the starting point for most of the follow-on tutorials. For example, you can now install and run software
on your EC2 instance.

Go back to the top page to continue: Starting up an Amazon Web Services machine

2.2.4 Log into your instance from a Windows machine

Go follow the instructions this URL:

https://angus.readthedocs.org/en/2015/amazon/log-in-with-mobaxterm-win.html

Logging in is the starting point for most of the follow-on tutorials. For example, you can now install and run software
on your EC2 instance.

Go back to the top page to continue: Starting up an Amazon Web Services machine

2.2.5 Configure your instance firewall

Normally, Amazon computers only allow shell logins via ssh (port 22 access). If we want to run a Web service or
something else, we need to give the outside world access to other network locations on the computer.

Below, we will open ports 8000-9000, which will let us run things like RStudio Server. If you want to run other things,
like a Web server, you’ll need to find the port(s) associated with those services and open those instead of 8000-9000.
(Tip: Web servers run on port 80.)

1. Select ‘Security Groups’

Find “Security Groups” in the lower pane of your instance’s information page, and click on “launch-wizard-N”.

16 Chapter 2. Starting up an Amazon Web Services machine

https://angus.readthedocs.org/en/2015/amazon/log-in-with-mobaxterm-win.html

labibi Documentation, Release 1.0

2.2. Full table of contents: 17

labibi Documentation, Release 1.0

2. Select ‘Inbound’

3. Select ‘Edit’

4. Select ‘Add Rule’

5. Enter rule information

Add a new rule: Custom TCP, 8000-9000, Source Anywhere.

18 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

6. Select ‘Save’.

7. Return to the Instances page.

You’re done!

Go back to the index: Starting up an Amazon Web Services machine

2.2. Full table of contents: 19

labibi Documentation, Release 1.0

20 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

2.2.6 Creating your own Amazon Machine Image

1. Actions, Create image

2. Fill out name and description

3. Wait for it to become available

2.2. Full table of contents: 21

labibi Documentation, Release 1.0

Go back to the index: Starting up an Amazon Web Services machine

2.2.7 Working with persistent storage: volumes and snapshots

Volumes are basically UNIX disks (“block devices”) that will persist after you terminate your instance. They are tied
to a zone within a region and can only be mounted on instances within that zone.

Snapshots are an Amazon-specific thing that let you communicate data on volumes between accounts. They are “read-
only” backups that are created from volumes; they can be used to create new volumes in turn, and can also be shared
with specific people (or made public). Snapshots are tied to a region but not a zone.

22 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

2.2. Full table of contents: 23

labibi Documentation, Release 1.0

Creating persistent volumes to store data

0. Locate your instance zone

1. Click on the volumes tab

2. ‘Create Volume’

3. Configure your volume to have the same zone as your instance

4. Wait for your volume to be available

5. Select volume, Actions, Attach volume

6. Select instance, attachment point, and Attach

Here, your attachment point will be ‘/dev/sdf’ and your block device will be named ‘/dev/xvdf’.

24 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

7. On your instance, list block devices

Type:

lsblk

You should see something like this:

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvda 202:0 0 8G 0 disk
`-xvda1 202:1 0 8G 0 part /
xvdf 202:80 0 100G 0 disk

Now format the disk (ONLY ON EMPTY DISKS - THIS WILL ERASE ANY DATA ON THE DISK):

sudo mkfs -t ext4 /dev/xvdf

and mount the disk:

sudo mkdir /disk
sudo mount /dev/xvdf /disk
sudo chmod a+rwxt /disk

and voila, anything you put on /disk will be on the volume that you allocated!

The command ‘df -h’ will show you what disks are actually mounted & where.

Detaching volumes

1. Unmount it from the instance

Change out of the directory, stop any running programs using it, and then:

sudo umount /disk

2. Detach

On the ‘volumes’ tab in your EC2 console, go to Actions, Detach.

2.2. Full table of contents: 25

labibi Documentation, Release 1.0

3. Yes, detach.

Note, volumes remain attached when you reboot or stop an instance, but are (of course) detached when you terminate
an instance.

26 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

2.2. Full table of contents: 27

labibi Documentation, Release 1.0

Creating snapshots of volumes

1. Actions, Create snapshot

2. Fill out name and description

3. Click ‘Close’ & wait.

28 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

2.2.8 Terminating your instance

Amazon will happily charge you for running instances and/or associated ephemeral storage until the cows come home
- it’s your responsibility to turn things off. The Right Way to do this for running instances is to terminate.

The caveat here is that everything ephemeral will be deleted (excluding volumes that you created/attached). So you
want to make sure you transfer off anything you care about.

To terminate:

1. Select Actions, Instance State, Terminate

In the ‘Instances’ tab, select your instance and then go to the Actions menu.

2.2. Full table of contents: 29

labibi Documentation, Release 1.0

2. Agree to terminate.

3. Verify status on your instance page.

Instance state should be either “shutting down” or “terminated”.

Return to index: Starting up an Amazon Web Services machine

2.2.9 Things to mention and discuss

When do disks go away?

• never on reboot;

• ephemeral disks go away on stop;

30 Chapter 2. Starting up an Amazon Web Services machine

labibi Documentation, Release 1.0

• AMI-attached volumes go away on terminate;

• attached volumes never go away on terminate and have to be explicitly deleted;

• snapshots only go away when you explicitly delete them.

What are you charged for?

• you are charged for a running instance at the @@instance price rates;

• ephemeral storage/instance-specific storage is included within that.

• when you stop an instance, you are charged at disk-space rates for the stopped disk;

• when you create a volume, you are charged for that volume until you delete it;

• when you create a snapshot, you are charged for that snapshot until you delete it.

To make sure you’re not getting charged, go to your Instance view and clear all search filters; anything that is “running”
or “stopped” is costing you. Also check your volumes and your snapshots - they should be empty.

Regions vs zones:

• AMIs and Snapshots (and keys and security groups) are per region;

• Volumes and instances are per zone;

2.2.10 Running RStudio Server in the cloud

In this section, we will run RStudio Server on a remote Amazon machine. This will require starting up an instance,
configuring its network firewall, and installing and running some software.

Reference documentation for running RStudio Server on Ubuntu:

https://www.rstudio.com/products/rstudio/download-server/

1. Start up an Amazon instance

Start an ami-05384865 on an m4.xlarge machine, as per the instructions here:

Start an Amazon Web Services computer:.

2. Configure your network firewall

Normally, Amazon computers only allow shell logins via ssh. Since we want to run a Web service, we need to give
the outside world access to other network locations on the computer.

Follow these instructions:

Configure your instance firewall

(You can do this while the computer is booting.)

2.2. Full table of contents: 31

https://www.rstudio.com/products/rstudio/download-server/

labibi Documentation, Release 1.0

3. Log in via the shell

Follow these instructions to log in via the shell:

Log into your instance with the UNIX shell.

4. Set a password for the ‘ubuntu’ account

Amazon Web Services computers normally require a key (the .pem file) instead of a login password, but RStudio
Server will need us to log in with a password. So we need to configure a password for the account we’re going to use
(which is ‘ubuntu’)

Create a password like so:

sudo passwd ubuntu

and set it to something you’ll remember.

5. Install R and the gdebi tool

Update the software catalog and install a few things:

sudo apt-get update && sudo apt-get -y install gdebi-core r-base

This will take a few minutes.

6. Download & install RStudio Server

wget https://download2.rstudio.org/rstudio-server-0.99.891-amd64.deb
sudo gdebi -n rstudio-server-0.99.891-amd64.deb

Upon success, you should see:

Mar 07 15:20:18 ip-172-31-6-68 systemd[1]: Starting RStudio Server...
Mar 07 15:20:18 ip-172-31-6-68 systemd[1]: Started RStudio Server.

7. Open your RStudio Server instance

Finally, go to ‘http://‘ + your hostname + ‘:8787’ in a browser, eg.

http://ec2-XX-YY-33-165.us-west-1.compute.amazonaws.com:8787/

and log into RStudio with username ‘ubuntu’ and the password you set it to above.

Voila!

You can now just go ahead and use this, or you can “stop” it, or you can freeze into an AMI for later use.

Note that on reboot, RStudio Server will start up again and all your files will be there.

Go back to the index: Starting up an Amazon Web Services machine.

32 Chapter 2. Starting up an Amazon Web Services machine

http://

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

33

labibi Documentation, Release 1.0

34 Chapter 3. Indices and tables

CHAPTER 4

Short read quality and trimming

Start up an instance with ami-05384865 and 500 GB of local storage (Start an Amazon Web Services computer:). You
should also configure your firewall (Configure your instance firewall) to pass through TCP ports 8000-8888.

Then, Log into your computer.

—

You should now be logged into your Amazon computer! You should see something like this:

ubuntu@ip-172-30-1-252:~$

this is the command prompt.

4.1 Prepping the computer

Before we do anything else, we need to set up a place to work and install a few things.

First, let’s set up a place to work. Here, we’ll make /mnt writeable:

sudo chmod a+rwxt /mnt

Note: /mnt is the location we’re going to use on Amazon computers, but if you’re working on a local cluster, it will
have a different location. Talk to your local sysadmin and ask them where they recommend putting lots of short-term
working files, i.e. the “scratch” space.

4.2 Installing some software

Run:

sudo apt-get -y update && \
sudo apt-get -y install trimmomatic fastqc python-pip \

samtools zlib1g-dev ncurses-dev python-dev

Install anaconda:

curl -O https://repo.continuum.io/archive/Anaconda3-4.2.0-Linux-x86_64.sh
bash Anaconda3-4.2.0-Linux-x86_64.sh

35

labibi Documentation, Release 1.0

Then update your environment and install khmer:

source ~/.bashrc

cd
git clone https://github.com/dib-lab/khmer.git
cd khmer
sudo python2 setup.py install

4.3 Running Jupyter Notebook

Let’s also run a Jupyter Notebook in /mnt. First, configure it a teensy bit more securely, and also have it run in the
background:

jupyter notebook --generate-config

cat >>/home/ubuntu/.jupyter/jupyter_notebook_config.py <<EOF
c = get_config()
c.NotebookApp.ip = '*'
c.NotebookApp.open_browser = False
c.NotebookApp.password = u'sha1:5d813e5d59a7:b4e430cf6dbd1aad04838c6e9cf684f4d76e245c'
c.NotebookApp.port = 8000

EOF

Now, run!

cd /mnt
jupyter notebook &

You should be able to visit port 8000 on your AWS computer and see the Jupyter console. (The password is ‘davis’.)

4.4 Data source

We’re going to be using a subset of data from Hu et al., 2016. This paper from the Banfield lab samples some relatively
low diversity environments and finds a bunch of nearly complete genomes.

(See DATA.md for a list of the data sets we’re using in this tutorial.)

4.5 1. Copying in some data to work with.

We’ve loaded subsets of the data onto an Amazon location for you, to make everything faster for today’s work. We’re
going to put the files on your computer locally under the directory /mnt/data:

mkdir /mnt/data

Next, let’s grab part of the data set:

cd /mnt/data
curl -O -L https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1976948_1.fastq.gz
curl -O -L https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1976948_2.fastq.gz

Now if you type:

36 Chapter 4. Short read quality and trimming

http://mbio.asm.org/content/7/1/e01669-15.full
https://github.com/ngs-docs/2016-metagenomics-sio/blob/work/DATA.md

labibi Documentation, Release 1.0

ls -l

you should see something like:

total 346936
-rw-rw-r-- 1 ubuntu ubuntu 169620631 Oct 11 23:37 SRR1976948_1.fastq.gz
-rw-rw-r-- 1 ubuntu ubuntu 185636992 Oct 11 23:38 SRR1976948_2.fastq.gz

These are 1m read subsets of the original data, taken from the beginning of the file.

One problem with these files is that they are writeable - by default, UNIX makes things writeable by the file owner.
Let’s fix that before we go on any further:

chmod u-w *

We’ll talk about what these files are below.

4.6 1. Copying data into a working location

First, make a working directory; this will be a place where you can futz around with a copy of the data without messing
up your primary data:

mkdir /mnt/work
cd /mnt/work

Now, make a “virtual copy” of the data in your working directory by linking it in –

ln -fs /mnt/data/* .

These are FASTQ files – let’s take a look at them:

less SRR1976948_1.fastq.gz

(use the spacebar to scroll down, and type ‘q’ to exit ‘less’)

Question:

• where does the filename come from?

• why are there 1 and 2 in the file names?

Links:

• FASTQ Format

4.7 2. FastQC

We’re going to use FastQC to summarize the data. We already installed ‘fastqc’ on our computer for you.

Now, run FastQC on two files:

fastqc SRR1976948_1.fastq.gz
fastqc SRR1976948_2.fastq.gz

Now type ‘ls’:

ls -d *fastqc*

4.6. 1. Copying data into a working location 37

http://en.wikipedia.org/wiki/FASTQ_format
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

labibi Documentation, Release 1.0

to list the files, and you should see:

SRR1976948_1_fastqc.html
SRR1976948_1_fastqc.zip
SRR1976948_2_fastqc.html
SRR1976948_2_fastqc.zip

You can download these files using your Jupyter Notebook console, if you like; or you can look at these copies of
them:

• SRR1976948_1_fastqc/fastqc_report.html

• SRR1976948_2_fastqc/fastqc_report.html

Questions:

• What should you pay attention to in the FastQC report?

• Which is “better”, file 1 or file 2? And why?

Links:

• FastQC

• FastQC tutorial video

4.8 3. Trimmomatic

Now we’re going to do some trimming! We’ll be using Trimmomatic, which (as with fastqc) we’ve already installed
via apt-get.

The first thing we’ll need are the adapters to trim off:

curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-semi-2015-03-04/TruSeq2-PE.fa

Now, to run Trimmomatic:

TrimmomaticPE SRR1976948_1.fastq.gz \
SRR1976948_2.fastq.gz \

SRR1976948_1.qc.fq.gz s1_se \
SRR1976948_2.qc.fq.gz s2_se \
ILLUMINACLIP:TruSeq2-PE.fa:2:40:15 \
LEADING:2 TRAILING:2 \
SLIDINGWINDOW:4:2 \
MINLEN:25

You should see output that looks like this:
...
Input Read Pairs: 1000000 Both Surviving: 885734 (88.57%) Forward Only Surviving: 114262 (11.43%) Reverse Only Surviving: 4 (0.00%) Dropped: 0 (0.00%)
TrimmomaticPE: Completed successfully

Questions:

• How do you figure out what the parameters mean?

• How do you figure out what parameters to use?

• What adapters do you use?

• What version of Trimmomatic are we using here? (And FastQC?)

• Do you think parameters are different for RNAseq and genomic data sets?

38 Chapter 4. Short read quality and trimming

http://2016-metagenomics-sio.readthedocs.io/en/work/_static/SRR1976948_1_fastqc/fastqc_report.html
http://2016-metagenomics-sio.readthedocs.io/en/work/_static/SRR1976948_2_fastqc/fastqc_report.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.youtube.com/watch?v=bz93ReOv87Y
http://www.usadellab.org/cms/?page=trimmomatic

labibi Documentation, Release 1.0

• What’s with these annoyingly long and complicated filenames?

• why are we running R1 and R2 together?

For a discussion of optimal trimming strategies, see MacManes, 2014 – it’s about RNAseq but similar arguments
should apply to metagenome assembly.

Links:

• Trimmomatic

4.9 4. FastQC again

Run FastQC again on the trimmed files:

fastqc SRR1976948_1.qc.fq.gz
fastqc SRR1976948_2.qc.fq.gz

And now view my copies of these files:

• SRR1976948_1.qc_fastqc/fastqc_report.html

• SRR1976948_2.qc_fastqc/fastqc_report.html

Let’s take a look at the output files:

less SRR1976948_1.qc.fq.gz

(again, use spacebar to scroll, ‘q’ to exit less).

Questions:

• is the quality trimmed data “better” than before?

• Does it matter that you still have adapters!?

Optional: K-mer Spectral Error Trimming

Next: Run the MEGAHIT assembler

4.9. 4. FastQC again 39

http://journal.frontiersin.org/Journal/10.3389/fgene.2014.00013/abstract
http://www.usadellab.org/cms/?page=trimmomatic
http://2016-metagenomics-sio.readthedocs.io/en/work/_static/SRR1976948_1.qc_fastqc/fastqc_report.html
http://2016-metagenomics-sio.readthedocs.io/en/work/_static/SRR1976948_2.qc_fastqc/fastqc_report.html

labibi Documentation, Release 1.0

40 Chapter 4. Short read quality and trimming

CHAPTER 5

K-mer Spectral Error Trimming

(Optional)

khmer documentation: http://khmer.readthedocs.io/en/latest

If you plot a k-mer abundance histogram of the samples, you’ll notice something: there’s an awful lot of unique
(abundance=1) k-mers. These are erroneous k-mers caused by sequencing errors.

In a new Python3 Jupyter Notebook, run:

cd /mnt/work

and then

!abundance-dist-single.py -M 1e9 -k 21 SRR1976948_1.fastq.gz SRR1976948_1.fastq.gz.dist

and in another cell:

%matplotlib inline
import numpy
from pylab import *
dist1 = numpy.loadtxt('SRR1976948_1.fastq.gz.dist', skiprows=1, delimiter=',')
plot(dist1[:,0], dist1[:,1])
axis(xmax=50)

Many of these errors remain even after you do the Trimmomatic run; you can see this with:

!abundance-dist-single.py -M 1e9 -k 21 SRR1976948_1.qc.fq.gz SRR1976948_1.qc.fq.gz.dist

and then plot:

dist2 = numpy.loadtxt('SRR1976948_1.qc.fq.gz.dist', skiprows=1, delimiter=',')
plot(dist1[:,0], dist1[:,1], label='untrimmed')
plot(dist2[:,0], dist2[:,1], label='trimmed')
legend(loc='upper right')
axis(xmax=50)

This is for two reasons:

First, Trimmomatic trims based solely on the quality score, which is a statistical statement about the correctness of a
base - a Q score of 30 means that, of 1000 bases with that Q score, 1 of those bases will be wrong. So, a base can have
a high Q score and still be wrong! (and many bases will have a low Q score and still be correct)

Second, we trimmed very lightly - only bases that had a very low quality were removed. This was intentional because
with assembly, you want to retain as much coverage as possible, and the assembler will generally figure out what the
“correct” base is from the coverage.

41

http://khmer.readthedocs.io/en/latest

labibi Documentation, Release 1.0

An alternative to trimming based on the quality scores is to trim based on k-mer abundance - this is known as k-mer
spectral error trimming. K-mer spectral error trimming always beats quality score trimming in terms of eliminating
errors; e.g. look at this table from Zhang et al., 2014:

The basic logic is this: if you see low abundance k-mers in a high coverage data set, those k-mers are almost certainly
the result of errors. (Caveat: strain variation could also create them.)

In metagenomic data sets we do have the problem that we may have very low and very high coverage data. So we
don’t necessarily want to get rid of all low-abundance k-mers, because they may represent truly low abundance (but
useful) data.

As part of the khmer project in my lab, we have developed an approach that sorts reads into high abundance and low
abundance reads, and only error trims the high abundance reads.

42 Chapter 5. K-mer Spectral Error Trimming

http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0101271

labibi Documentation, Release 1.0

This does mean that many errors may get left in the data set, because we have no way of figuring out if they are errors
or simply low coverage, but that’s OK (and you can always trim them off if you really care).

To run such error trimming, use the command trim-low-abund.py (at the command line, or prefix with a ‘!’ in
the notebook):

interleave-reads.py SRR1976948_1.qc.fq.gz SRR1976948_2.qc.fq.gz |
trim-low-abund.py -V -M 8e9 -C 3 -Z 10 - -o SRR1976948.trim.fq

5.1 Why (or why not) do k-mer trimming?

If you can assemble your data set without k-mer trimming, there’s no reason to do it. The reason we’re error trimming
here is to speed up the assembler (by removing data) and to decrease the memory requirements of the assembler (by
removing a number of k-mers).

To see how many k-mers we removed, you can examine the distribution as above, or use the unique-kmers.py
script:

unique-kmers.py SRR1976948_1.qc.fq.gz SRR1976948_2.qc.fq.gz
unique-kmers.py SRR1976948.trim.fq

5.1. Why (or why not) do k-mer trimming? 43

labibi Documentation, Release 1.0

Next: Run the MEGAHIT assembler

44 Chapter 5. K-mer Spectral Error Trimming

CHAPTER 6

Run the MEGAHIT assembler

MEGAHIT is a very fast, quite good assembler designed for metagenomes.

First, install it:

cd
git clone https://github.com/voutcn/megahit.git
cd megahit
make

Now, download some data:

cd /mnt/data
curl -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1976948.abundtrim.subset.pe.fq.gz
curl -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1977249.abundtrim.subset.pe.fq.gz

These are data that have been run through k-mer abundance trimming (see K-mer Spectral Error Trimming) and
subsampled so that we can run an assembly in a fairly short time period :).

Now, finally, run the assembler!

mkdir /mnt/assembly
cd /mnt/assembly
ln -fs ../data/*.subset.pe.fq.gz .

~/megahit/megahit --12 SRR1976948.abundtrim.subset.pe.fq.gz,SRR1977249.abundtrim.subset.pe.fq.gz \
-o combined

This will take about 25 minutes; at the end you should see output like this:

... 12787984 bp, min 200 bp, max 61353 bp, avg 1377 bp, N50 3367 bp

... ALL DONE. Time elapsed: 1592.503825 seconds

The output assembly will be in combined/final.contigs.fa.

6.1 While the assembly runs...

How assembly works - whiteboarding the De Bruijn graph approach.

Interpreting the MEGAHIT working output :)

What does, and doesn’t, assemble?

45

https://github.com/voutcn/megahit

labibi Documentation, Release 1.0

How good is assembly anyway?

Discussion:

Why would we assemble, vs looking at raw reads? What are the advantages and disadvantages?

What are the technology tradeoffs between Illumina HiSeq, Illumina MiSeq, and PacBio? (Also see this paper.)

What kind of experimental design considerations should you have if you plan to assemble?

Some figures: the first two come from work by Dr. Sherine Awad on analyzing the data from Shakya et al (2014). The
third comes from an analysis of read search vs contig search of a protein database.

46 Chapter 6. Run the MEGAHIT assembler

http://ivory.idyll.org/blog/2015-sharon-paper.html

labibi Documentation, Release 1.0

6.2 After the assembly is finished

At this point we can do a bunch of things:

• annotate the assembly (Annotation with Prokka);

• evaluate the assembly’s inclusion of k-mers and reads;

• set up a BLAST database so that we can search it for genes of interest;

• quantify the abundance of the contigs or genes in the assembly, using the original read data set (Gene Abundance
Estimation with Salmon);

• bin the contigs in the assembly into species bins;

6.2. After the assembly is finished 47

labibi Documentation, Release 1.0

48 Chapter 6. Run the MEGAHIT assembler

CHAPTER 7

Annotation with Prokka

Prokka is a tool that facilitates the fast annotation of prokaryotic genomes.

The goals of this tutorial are to:

• Install Prokka

• Use Prokka to annotate our genomes

7.1 Installing Prokka

Download and extract the latest version of prokka:

cd ~/
wget http://www.vicbioinformatics.com/prokka-1.11.tar.gz
tar -xvzf prokka-1.11.tar.gz

We also will need some dependencies such as bioperl:

sudo apt-get install bioperl libdatetime-perl libxml-simple-perl libdigest-md5-perl
sudo perl -MCPAN -e shell
sudo perl -MCPAN -e 'install "XML::Simple"'

Now, you should be able to add Prokka to your $PATH and set up the index for the sequence database:

export PATH=$PATH:$HOME/prokka-1.11/bin
prokka --setupdb

Prokka should be good to go now– you can check to make sure that all is well by typing prokka. This should print
the help screen with all available options.

7.2 Running Prokka

Make a new directory for the annotation:

cd /mnt
mkdir annotation
cd annotation

Link the metagenome assembly file into this directory:

49

labibi Documentation, Release 1.0

ln -fs /mnt/assembly/combined/final.contigs.fa

Now it is time to run Prokka! There are tons of different ways to specialize the running of Prokka. We are going to
keep it simple for now, though. It will take a little bit to run.

prokka subset_assembly.fa --outdir prokka_annotation --prefix metagG

This will generate a new folder called prokka_annotation in which will be a series of files, which are detailed
here.

In particular, we will be using the *.ffn file to assess the relative read coverage within our metagenomes across the
predicted genomic regions.

7.3 References

• http://www.vicbioinformatics.com/software.prokka.shtml

• https://www.ncbi.nlm.nih.gov/pubmed/24642063

• https://github.com/tseemann/prokka/blob/master/README.md

50 Chapter 7. Annotation with Prokka

https://github.com/tseemann/prokka/blob/master/README.md#output-files
http://www.vicbioinformatics.com/software.prokka.shtml
https://www.ncbi.nlm.nih.gov/pubmed/24642063
https://github.com/tseemann/prokka/blob/master/README.md

CHAPTER 8

Day 2 - installation instructions

(Instructions mostly copied from Short read quality and trimming!)

Use ami-05384865, with a 500 GB local disk (see: Start an Amazon Web Services computer:)

Make /mnt/ read/write:

sudo chmod a+rwxt /mnt

Run:

sudo apt-get -y update && \
sudo apt-get -y install trimmomatic fastqc python-pip \

samtools zlib1g-dev ncurses-dev python-dev

Install anaconda:

curl -O https://repo.continuum.io/archive/Anaconda3-4.2.0-Linux-x86_64.sh
bash Anaconda3-4.2.0-Linux-x86_64.sh

Then update your environment and install khmer:

source ~/.bashrc

cd
git clone https://github.com/dib-lab/khmer.git
cd khmer
sudo python2 setup.py install

8.1 Running Jupyter Notebook

Let’s also run a Jupyter Notebook in /mnt. First, configure it a teensy bit more securely, and also have it run in the
background.

Generate a config:

jupyter notebook --generate-config

Add a password, have it not run a browser, and put it on port 8000 by default:

cat >>/home/ubuntu/.jupyter/jupyter_notebook_config.py <<EOF
c = get_config()
c.NotebookApp.ip = '*'
c.NotebookApp.open_browser = False

51

labibi Documentation, Release 1.0

c.NotebookApp.password = u'sha1:5d813e5d59a7:b4e430cf6dbd1aad04838c6e9cf684f4d76e245c'
c.NotebookApp.port = 8000

EOF

Now, run!

cd /mnt
jupyter notebook &

You should be able to visit port 8000 on your AWS computer and see the Jupyter console.

52 Chapter 8. Day 2 - installation instructions

CHAPTER 9

Gene Abundance Estimation with Salmon

Salmon is one of a breed of new, very fast RNAseq counting packages. Like Kallisto and Sailfish, Salmon counts frag-
ments without doing up-front read mapping. Salmon can be used with edgeR and others to do differential expression
analysis (if you are quantifying RNAseq data).

Today we will use it to get a handle on the relative distribution of genomic reads across the predicted protein regions.

The goals of this tutorial are to:

• Install salmon

• Use salmon to estimate gene coverage in our metagenome dataset

Extra resources:

• see the finished plotting notebook.

• see the extract-sequences.py script.

9.1 Installing Salmon

Download and extract the latest version of Salmon and add it to your PATH:

cd
wget https://github.com/COMBINE-lab/salmon/releases/download/v0.7.2/Salmon-0.7.2_linux_x86_64.tar.gz
tar -xvzf Salmon-0.7.2_linux_x86_64.tar.gz
cd Salmon-0.7.2_linux_x86_64
export PATH=$PATH:$HOME/Salmon-0.7.2_linux_x86_64/bin

9.2 Running Salmon

Go to the data directory and download the prokka annotated sequences, assembled metagenome, and fastq files:

mkdir -p /mnt/data
cd /mnt/data
curl -L -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1976948.abundtrim.subset.pe.fq.gz
curl -L -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1977249.abundtrim.subset.pe.fq.gz
curl -L -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/prokka_annotation_assembly.tar.gz
tar -xvzf prokka_annotation_assembly.tar.gz

Make a new directory for the quantification of data with Salmon:

53

https://github.com/ngs-docs/2016-metagenomics-sio/blob/master/files/plot-quant.ipynb
https://github.com/ngs-docs/2016-metagenomics-sio/blob/master/files/extract-sequences.py

labibi Documentation, Release 1.0

mkdir /mnt/quant
cd /mnt/quant

Grab the nucleotide (*ffn) predicted protein regions from Prokka and link them here. Also grab the trimmed sequence
data (*fq)

ln -fs /mnt/data/prokka_annotation/*ffn .
ln -fs /mnt/data/*.abundtrim.subset.pe.fq.gz .

Create the salmon index:

salmon index -t metagG.ffn -i transcript_index --type quasi -k 31

Salmon requires that paired reads be separated into two files. We can split the reads using the
split-paired-reads.py from the khmer package:

for file in *.abundtrim.subset.pe.fq.gz
do

tail=.fq.gz
BASE=${file/$tail/}
split-paired-reads.py $BASE$tail -1 ${file/$tail/}.1.fq -2 ${file/$tail/}.2.fq

done

Now, we can quantify our reads against this reference:

for file in *.pe.1.fq
do
tail1=.abundtrim.subset.pe.1.fq
tail2=.abundtrim.subset.pe.2.fq
BASE=${file/$tail1/}
salmon quant -i transcript_index --libType IU \

-1 $BASE$tail1 -2 $BASE$tail2 -o $BASE.quant;
done

(Note that –libType must come before the read files!)

This will create a bunch of directories named after the fastq files that we just pushed through. Take a look at what files
there are within one of these directories:

find SRR1976948.quant -type f

9.3 Working with count data

Now, the quant.sf files actually contain the relevant information about expression – take a look:

head -10 SRR1976948.quant/quant.sf

The first column contains the transcript names, and the fourth column is what we will want down the road - the
normalized counts (TPM). However, they’re not in a convenient location / format for use; let’s fix that.

Download the gather-counts.py script:

curl -L -O https://raw.githubusercontent.com/ngs-docs/2016-metagenomics-sio/master/gather-counts.py

and run it:

python2 ./gather-counts.py

54 Chapter 9. Gene Abundance Estimation with Salmon

labibi Documentation, Release 1.0

This will give you a bunch of .counts files, which are processed from the quant.sf files and named for the directory
from which they emanate.

9.4 Plotting the results

In Jupyter Notebook, open a new Python3 notebook and enter:

%matplotlib inline
import numpy
from pylab import *

In another cell:

cd /mnt/quant

In another cell:

counts1 = [x.split()[1] for x in open('SRR1976948.quant.counts')]
counts1 = [float(x) for x in counts1[1:]]
counts1 = numpy.array(counts1)

counts2 = [x.split()[1] for x in open('SRR1977249.quant.counts')]
counts2 = [float(x) for x in counts2[1:]]
counts2 = numpy.array(counts2)

plot(counts1, counts2, '*')

9.5 References

• http://salmon.readthedocs.io/en/latest/salmon.html

• http://biorxiv.org/content/early/2016/08/30/021592

9.4. Plotting the results 55

http://salmon.readthedocs.io/en/latest/salmon.html
http://biorxiv.org/content/early/2016/08/30/021592

labibi Documentation, Release 1.0

56 Chapter 9. Gene Abundance Estimation with Salmon

CHAPTER 10

Mapping

Download bwa:

cd
curl -L https://sourceforge.net/projects/bio-bwa/files/bwa-0.7.15.tar.bz2/download > bwa-0.7.15.tar.bz2

Unpack and build it:

tar xjvf bwa-0.7.15.tar.bz2
cd bwa-0.7.15
make

Install it:

sudo cp bwa /usr/local/bin

10.1 Downloading data

Now, go to a new directory and grab the data:

mkdir /mnt/mapping
cd /mnt/mapping

curl -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1976948.abundtrim.subset.pe.fq.gz
curl -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1977249.abundtrim.subset.pe.fq.gz

We will also need the assembly; rather than rebuilding it, you can download a copy that we saved for you:

curl -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/subset_assembly.fa.gz
gunzip subset_assembly.fa

Next, you’ll need to index the assembly:

bwa index subset_assembly.fa

10.2 Splitting the reads

The reads are in paired-end/interleaved format, so you’ll need to split them -:

57

labibi Documentation, Release 1.0

for i in *.pe.fq.gz
do

gunzip -c $i | head -800000 | split-paired-reads.py -1 $i.1 -2 $i.2 -
done

This will take the interleaved reads and produce .1 and .2 files from them.

10.3 Mapping the reads

Map the left reads:

for i in *.1
do

bwa aln subset_assembly.fa $i > $(echo $i | cut -d. -f1)_1.sai
done

Map the right reads:

for i in *.2
do

bwa aln subset_assembly.fa $i > $(echo $i | cut -d. -f1)_2.sai
done

Combine the paired ends with bwa sampe:

bwa sampe subset_assembly.fa SRR1976948_1.sai SRR1976948_2.sai SRR1976948.*.1 SRR1976948.*.2 > SRR1976948.sam
bwa sampe subset_assembly.fa SRR1977249_1.sai SRR1977249_2.sai SRR1977249.*.1 SRR1977249.*.2 > SRR1977249.sam

10.4 Converting to BAM to visualize

First, index the assembly for samtools:

samtools faidx subset_assembly.fa

Then, convert both SAM files to BAM files:

for i in *.sam
do

samtools import subset_assembly.fa $i $i.bam
samtools sort $i.bam $i.bam.sorted
samtools index $i.bam.sorted.bam

done

10.5 Visualizing the read mapping

Find a contig name to visualize:

grep -v ^@ SRR1976948.sam | \
cut -f 3 | sort | uniq -c | sort -n

Pick one e.g. k99_13588.

Now execute:

58 Chapter 10. Mapping

labibi Documentation, Release 1.0

samtools tview SRR1976948.sam.bam.sorted.bam subset_assembly.fa -p k99_13588:400

(use arrow keys to scroll, ‘q’ to quit)

Look at it in both mappings:

samtools tview SRR1977249.sam.bam.sorted.bam subset_assembly.fa -p k99_13588:400

Why is the mapping so good??

Note: no strain variation :).

Grab some untrimmed data:

curl -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1976948_1.fastq.gz
curl -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/SRR1976948_2.fastq.gz

Now align this untrimmed data:

gunzip -c SRR1976948_1.fastq.gz | head -800000 > SRR1976948.1
gunzip -c SRR1976948_2.fastq.gz | head -800000 > SRR1976948.2

bwa aln subset_assembly.fa SRR1976948.1 > SRR1976948_1.untrimmed.sai
bwa aln subset_assembly.fa SRR1976948.2 > SRR1976948_2.untrimmed.sai

bwa sampe subset_assembly.fa SRR1976948_1.untrimmed.sai SRR1976948_2.untrimmed.sai SRR1976948.1 SRR1976948.2 > SRR1976948.untrimmed.sam

i=SRR1976948.untrimmed.sam
samtools import subset_assembly.fa $i $i.bam
samtools sort $i.bam $i.bam.sorted
samtools index $i.bam.sorted.bam

And now look:

samtools tview SRR1976948.untrimmed.sam.bam.sorted.bam subset_assembly.fa -p k99_13588:500

You can also use ‘Tablet’ to view the downloaded BAM file - see the Tablet paper.

10.5. Visualizing the read mapping 59

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815658/

labibi Documentation, Release 1.0

60 Chapter 10. Mapping

CHAPTER 11

Slicing and dicing with k-mers

(Note, this won’t work with amplified data.)

Extra resources:

• plotting notebook

—

At the command line, create a new directory and extract some data:

cd /mnt
mkdir slice
cd slice

We’re going to work with half the read data set for speed reasons –

gunzip -c ../mapping/SRR1976948.abundtrim.subset.pe.fq.gz | \
head -6000000 > SRR1976948.half.fq

In a Jupyter Notebook (go to ‘http://‘ + machine name + ‘:8000’), password ‘davis’, create new Python notebook
“conda root”, run:

cd /mnt/slice

and then in another cell:

!load-into-counting.py -M 4e9 -k 31 SRR1976948.kh SRR1976948.half.fq

and in another cell:

!abundance-dist.py SRR1976948.kh SRR1976948.half.fq SRR1976948.dist

and in yet another cell:

%matplotlib inline
import numpy
from pylab import *
dist1 = numpy.loadtxt('SRR1976948.dist', skiprows=1, delimiter=',')
plot(dist1[:,0], dist1[:,1])
axis(ymax=10000, xmax=1000)

Then:

python2 ~/khmer/sandbox/calc-median-distribution.py SRR1976948.kh \
SRR1976948.half.fq SRR1976948.readdist

61

https://github.com/ngs-docs/2016-metagenomics-sio/blob/master/files/coverage.ipynb
http://

labibi Documentation, Release 1.0

And:

python2 ~/khmer/sandbox/slice-reads-by-coverage.py SRR1976948.kh SRR1976948.half.fq slice.fq -m 0 -M 60

11.1 Assemble the slice

(Re)install megahit:

cd
git clone https://github.com/voutcn/megahit.git
cd megahit
make

Go back to the slice directory and extract paired ends:

cd /mnt/slice
extract-paired-ends.py slice.fq

Assemble!

~/megahit/megahit --12 slice.fq.pe -o slice

The contigs will be in slice/final.contigs.fa.

62 Chapter 11. Slicing and dicing with k-mers

CHAPTER 12

Using and Installing Circos

Circos is a powerful visualization tool that allows for the creation of circular graphics to display complex genomic
data (e.g. genome comparisons). On top of the circular ideogram generated can be layered any number of graphical
information (heatmaps, scatter plots, etc.).

The goals of this tutorial are to:

• Install circos on your Ubuntu AWS system

• Use Circos to visualize our metagenomic data

Note: Beyond this brief crash course , circos is very well-documented and has a great series of tutorials and course
materials that are useful.

12.1 Installing Circos

You’ll need to install one additional ubuntu package, libgd:

sudo apt-get -y install libgd-perl

Within your Amazon Instance make a directory called circos and navigate into it. There, we will download and extract
the latest version of circos:

cd /mnt
mkdir circos
cd circos
curl -O http://dib-training.ucdavis.edu.s3.amazonaws.com/metagenomics-scripps-2016-10-12/circos-0.69-3.tar.gz
tar -xvzf circos-0.69-3.tar.gz

Circos runs within Perl and as such does not need to be compiled to run. So, we can just add the location of circos to
our path variable. (Alternatively, you can append this statement to the end of your .bashrc file.)

export PATH=/mnt/circos/circos-0.69-3/bin:$PATH

Circos does, however, require quite a few additional perl modules to operate correctly. To see what modules are
missing and need to be downloaded type the following:

circos -modules > modules

Now, to download all of these we will be using CPAN, a package manager for perl. We are going to pick out all the
missing modules and then loop over those modules and download them using cpan.

63

http://circos.ca/documentation/tutorials/
http://circos.ca/documentation/course/

labibi Documentation, Release 1.0

grep missing modules |cut -f13 -d " " > missing_modules
for mod in $(cat missing_modules);

do
sudo cpan install $mod;
done

This will take a while to run. When it is done check that you now have all modules downloaded by typing:

circos -modules

If you got all ‘ok’ then you are good to go!

And with that, circos should be up and ready to go. Run the example by navigating to the examples folder within the
circos folder.

cd /mnt/circos/circos-0.69-3/example
bash run

This will take a little bit to run but should generate a file called circos.png. Open it and you can get an idea of
the huge variety of things that are possible with circos and a lot of patience. We will not be attempting anything that
complex today, however.

12.2 Visualizing Gene Coverage and Orientation

First, let’s make a directory where we will be doing all of our work for plotting:

mkdir /mnt/circos/plotting
cd /mnt/circos/plotting

Now, link in the *gff file output from prokka (which we will use to define the location of genes in each of our
genomes), the genome assembly file final.contigs.fa, and the SRR*counts files that we generated with
salmon:

ln -fs /mnt/data/prokka_annotation/*gff .
ln -fs /mnt/data/final.contigs.fa .
ln -fs /mnt/quant/*counts .

We also need to grab a set of useful scripts and config files for this plotting exercise:

curl -L -O https://github.com/ngs-docs/2016-metagenomics-sio/raw/master/circos-build.tar.gz
tar -xvzf circos-build.tar.gz
curl -L -O https://s3-us-west-1.amazonaws.com/dib-training.ucdavis.edu/metagenomics-scripps-2016-10-12/subset_assembly.fa.gz
gunzip subset_assembly.fa.gz
mv subset_assembly.fa final.contigs.fa

We are going to limit the data we are trying to visualize and get longest contigs from our assembly. We can do this
using a script from the khmer package:

extract-long-sequences.py final.contigs.fa -l 24000 -o final.contigs.long.fa

Next, we will run a script that processes the data from the the files that we just moved to create circos-acceptable files.
This is really the crux of using circos: figuring out how to get your data into the correct format.

python parse_data_for_circos.py

If you are interested– take a look at the script and the input files to see how these data were manipulated.

64 Chapter 12. Using and Installing Circos

labibi Documentation, Release 1.0

Circos operates off of three main types of files: 1) a config files that dictate the style and inputs to your circos plot,
2) a karyotype file that defines the size and layout of your “chromosomes”, and 3) any data files that you call in your
config file that detail attributes you want to plot.

The above script generated our karyotype file and four different data files. What are they? How are they oriented?

Now, we all that is left is actually running circos. Navigate into the circos-build directory and type circos:

cd circos-build
circos

This command should generate an circos.svg and circos.png. Check out the circos.png!

Now, let’s take a look at the file that controls this crazy figure– circos.config.

Try changing a few parameters– colors, radius, size, to see what you can do. Again, if you are into this type of
visualization, do check out the extensive tutorial.

12.3 References

• http://genome.cshlp.org/content/early/2009/06/15/gr.092759.109.abstract

• http://circos.ca/documentation/tutorials

• http://circos.ca/documentation/course/

12.3. References 65

http://circos.ca/documentation/tutorials/
http://genome.cshlp.org/content/early/2009/06/15/gr.092759.109.abstract
http://circos.ca/documentation/tutorials
http://circos.ca/documentation/course/

labibi Documentation, Release 1.0

66 Chapter 12. Using and Installing Circos

CHAPTER 13

Workflow and repeatability discussion

https://2016-oslo-repeatability.readthedocs.io/en/latest/

67

https://2016-oslo-repeatability.readthedocs.io/en/latest/

labibi Documentation, Release 1.0

68 Chapter 13. Workflow and repeatability discussion

CHAPTER 14

Technical information

The github repository for this workshop is public at https://github.com/ngs-docs/2016-metagenomics-sio

69

https://github.com/ngs-docs/2016-metagenomics-sio

	Welcome!
	1. Learning goals
	2. Safe space and code of conduct
	3. Instructor introductions
	4. Amazon and cloud computing - why?!
	5. Sticky notes and how they work... + Minute Cards

	Starting up an Amazon Web Services machine
	Start here: Start an Amazon Web Services computer:
	Full table of contents:

	Indices and tables
	Short read quality and trimming
	Prepping the computer
	Installing some software
	Running Jupyter Notebook
	Data source
	1. Copying in some data to work with.
	1. Copying data into a working location
	2. FastQC
	3. Trimmomatic
	4. FastQC again

	K-mer Spectral Error Trimming
	Why (or why not) do k-mer trimming?

	Run the MEGAHIT assembler
	While the assembly runs...
	After the assembly is finished

	Annotation with Prokka
	Installing Prokka
	Running Prokka
	References

	Day 2 - installation instructions
	Running Jupyter Notebook

	Gene Abundance Estimation with Salmon
	Installing Salmon
	Running Salmon
	Working with count data
	Plotting the results
	References

	Mapping
	Downloading data
	Splitting the reads
	Mapping the reads
	Converting to BAM to visualize
	Visualizing the read mapping

	Slicing and dicing with k-mers
	Assemble the slice

	Using and Installing Circos
	Installing Circos
	Visualizing Gene Coverage and Orientation
	References

	Workflow and repeatability discussion
	Technical information

